1、优化有效点判断方法:满足以下两个条件为有效:

1)和前一个解相比小于门限
2)和前二个解相比小于门限,或者和滤波后的解相比小于门限
This commit is contained in:
weidong 2024-08-05 17:44:02 +08:00
parent 0aca5d7041
commit 0b61447274

View File

@ -68,14 +68,37 @@ public class GNSSCalcFilterService {
// 检查是不是坏点
GnssCalcData record0 = null;
if(gnssHistoryRecords.size()>0) record0 = gnssHistoryRecords.get(0);
if(record0 != null && Math.abs(record0.getB562e() - newRecord.getB562e())<0.001) {
//如果上一个点为空则这个点是第一个点判为无效
if(record0 == null) return false;
//连续两个相同的点也认为无效
if(Math.abs(record0.getB562e() - newRecord.getB562e())<0.001) {
return false;
}
if(referPos==null && record0!=null) {
referPos = new double[]{record0.getB562e(), record0.getB562n(), record0.getB562d()};
//和上一个点相比超过门限则认为无效
if (Math.abs(newRecord.getB562e() - record0.getB562e()) > xyThreshold ||
Math.abs(newRecord.getB562n() - record0.getB562n()) > xyThreshold ||
Math.abs(newRecord.getB562d() - record0.getB562d()) > zThreshold) {
isGood = false; //记录为坏点下次不参与滤波
logger.debug("{} bad point",newRecord.getDeviceid());
}
if(referPos==null) return false;
// 如果是好点对于增强算法还需做进一步判断
if(isGood && isAdvFilter){
//和参考点比如果是坏点再和前二个点比如果还是坏点才认为是坏点
isGood =(referPos!=null && (Math.abs(newRecord.getB562e() - referPos[0]) <= xyThreshold &&
Math.abs(newRecord.getB562n() - referPos[1]) <= xyThreshold &&
Math.abs(newRecord.getB562d() - referPos[2]) <= zThreshold));
if(!isGood){
GnssCalcData record1 = null;
if (gnssHistoryRecords.size() > 1) record1 = gnssHistoryRecords.get(1);
isGood =(record1 == null ||
((Math.abs(newRecord.getB562e() - record1.getB562e()) <= xyThreshold &&
Math.abs(newRecord.getB562n() - record1.getB562n()) <= xyThreshold &&
Math.abs(newRecord.getB562d() - record1.getB562d()) <= zThreshold)));
}
logger.debug("{} point adv judge {}",newRecord.getDeviceid(), isGood);
}
/*
if (Math.abs(newRecord.getB562e() - referPos[0]) > xyThreshold ||
Math.abs(newRecord.getB562n() - referPos[1]) > xyThreshold ||
Math.abs(newRecord.getB562d() - referPos[2]) > zThreshold) {
@ -87,13 +110,16 @@ public class GNSSCalcFilterService {
GnssCalcData record1 = null;
if(gnssHistoryRecords.size()>1) record1 = gnssHistoryRecords.get(1);
if(record1 == null ||
Math.abs(newRecord.getB562e() - record1.getB562e()) > xyThreshold*2 ||
(Math.abs(newRecord.getB562e() - record1.getB562e()) > xyThreshold*2 ||
Math.abs(newRecord.getB562n() - record1.getB562n()) > xyThreshold*2 ||
Math.abs(newRecord.getB562d() - record1.getB562d()) > zThreshold*2) {
Math.abs(newRecord.getB562d() - record1.getB562d()) > zThreshold*2) ||
(Math.abs(newRecord.getB562e() - referPos[0]) > xyThreshold ||
Math.abs(newRecord.getB562n() - referPos[1]) > xyThreshold ||
Math.abs(newRecord.getB562d() - referPos[2]) > zThreshold)) {
logger.debug("{} adv filter bad point",newRecord.getDeviceid());
isGood = false; //记录为坏点下次不参与滤波
}
}
}*/
return isGood;
}
@ -174,7 +200,7 @@ public class GNSSCalcFilterService {
// 选取[newRecordTime-filterCycleHour, newRcordTime]之间的记录做平滑
// 如果这个时间段的记录数少于FILTER_MIN_RECORD_NUM本次不做平滑
LocalDateTime newRecordTime = newRecord.getCreatetime();
LocalDateTime filterAfterTime = newRecordTime.minusHours(filterCycleHour<zFilterCycleHour?zFilterCycleHour:filterCycleHour);
LocalDateTime filterAfterTime = newRecordTime.minusHours(Math.max(filterCycleHour,zFilterCycleHour));
LocalDateTime xyFilterTime = newRecordTime.minusHours(filterCycleHour);
LocalDateTime zFilterTime = newRecordTime.minusHours(zFilterCycleHour);
LocalDateTime minCycleTime = newRecordTime.minusHours(minCycleHour);