Compare commits

..

No commits in common. "a6fa18f5cc1a809344bd24233a456bfa84228509" and "ff2c0d691997013897703039ff706cad713117fb" have entirely different histories.

5 changed files with 10 additions and 1651 deletions

17
main.go
View File

@ -121,6 +121,7 @@ func startUDP() {
continue
}
rawData := buffer[:n]
data := string(rawData)
log.Printf("从 %s 接收到 %d 字节数据", addr.String(), n)
hexDump := hexDump(rawData)
@ -128,14 +129,13 @@ func startUDP() {
asciiDump := asciiDump(rawData)
log.Printf("ASCII码:\n%s", asciiDump)
weatherData, err := model.ParseData(rawData)
weatherData, err := model.ParseWeatherData(data)
if err != nil {
log.Printf("解析数据失败: %v", err)
continue
}
log.Println("成功解析气象站数据:")
log.Printf("设备类型: %s", getDeviceTypeString(weatherData.DeviceType))
log.Println(weatherData)
if weatherData.StationID != "" {
@ -145,7 +145,7 @@ func startUDP() {
log.Printf("警告: 收到的数据没有站点ID")
}
err = model.SaveWeatherData(weatherData, string(rawData))
err = model.SaveWeatherData(weatherData, data)
if err != nil {
log.Printf("保存数据到数据库失败: %v", err)
} else {
@ -154,17 +154,6 @@ func startUDP() {
}
}
func getDeviceTypeString(deviceType model.DeviceType) string {
switch deviceType {
case model.DeviceTypeWIFI:
return "WIFI"
case model.DeviceTypeRS485:
return "RS485"
default:
return "未知"
}
}
func main() {
setupLogger()
startUDP()

View File

@ -30,35 +30,9 @@ func InitDB() error {
return fmt.Errorf("数据库连接测试失败: %v", err)
}
// 创建RS485数据表
err = createRS485Table()
if err != nil {
return fmt.Errorf("创建RS485数据表失败: %v", err)
}
return nil
}
func createRS485Table() error {
_, err := db.Exec(`
CREATE TABLE IF NOT EXISTS rs485_weather_data (
id SERIAL PRIMARY KEY,
station_id VARCHAR(50) NOT NULL,
timestamp TIMESTAMP NOT NULL,
temperature DECIMAL(5,2), -- 温度摄氏度
humidity DECIMAL(5,2), -- 湿度%
wind_speed DECIMAL(5,2), -- 风速m/s
wind_direction DECIMAL(5,2), -- 风向
rainfall DECIMAL(5,2), -- 降雨量mm
light DECIMAL(10,2), -- 光照lux
uv DECIMAL(5,2), -- 紫外线
pressure DECIMAL(7,2), -- 气压hPa
raw_data TEXT, -- 原始数据
FOREIGN KEY (station_id) REFERENCES stations(station_id)
)`)
return err
}
func CloseDB() {
if db != nil {
db.Close()
@ -105,19 +79,7 @@ func SaveWeatherData(data *WeatherData, rawData string) error {
cst := time.FixedZone("CST", 8*60*60)
timestamp := time.Now().In(cst)
// 根据设备类型选择不同的保存方法
switch data.DeviceType {
case DeviceTypeWIFI:
return saveWIFIWeatherData(data, rawData, timestamp)
case DeviceTypeRS485:
return saveRS485WeatherData(data, rawData, timestamp)
default:
return fmt.Errorf("未知的设备类型")
}
}
func saveWIFIWeatherData(data *WeatherData, rawData string, timestamp time.Time) error {
_, err := db.Exec(`
_, err = db.Exec(`
INSERT INTO weather_data (
station_id, timestamp, temp_f, humidity, dewpoint_f, windchill_f,
wind_dir, wind_speed_mph, wind_gust_mph, rain_in, daily_rain_in,
@ -134,33 +96,8 @@ func saveWIFIWeatherData(data *WeatherData, rawData string, timestamp time.Time)
int(data.AbsBarometerIn*1000), int(data.BarometerIn*1000), data.LowBattery, rawData)
if err != nil {
return fmt.Errorf("保存WIFI气象数据失败: %v", err)
}
return nil
}
func saveRS485WeatherData(data *WeatherData, rawData string, timestamp time.Time) error {
// 将华氏度转换回摄氏度
tempC := (data.TempF - 32) * 5 / 9
// 将mph转换回m/s
windSpeedMS := data.WindSpeedMph / 2.23694
// 将inch转换回mm
rainfallMM := data.RainIn * 25.4
// 将inHg转换回hPa
pressureHPa := data.BarometerIn * 33.8639
_, err := db.Exec(`
INSERT INTO rs485_weather_data (
station_id, timestamp, temperature, humidity, wind_speed,
wind_direction, rainfall, light, uv, pressure, raw_data
) VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10, $11)`,
data.StationID, timestamp,
tempC, data.Humidity, windSpeedMS,
data.WindDir, rainfallMM, data.SolarRadiation,
data.UV, pressureHPa, rawData)
if err != nil {
return fmt.Errorf("保存RS485气象数据失败: %v", err)
return fmt.Errorf("保存气象数据失败: %v", err)
}
return nil
}

View File

@ -1,814 +0,0 @@
package model
import (
"fmt"
)
// Protocol 定义协议结构
type Protocol struct {
RawData []byte
}
// NewProtocol 创建新的协议实例
func NewProtocol(data []byte) *Protocol {
return &Protocol{
RawData: data,
}
}
// IdentifyTxType 解析传输类型第一个字节bit 0-7
func (p *Protocol) IdentifyTxType() (binary string, hexVal string, decVal uint8) {
if len(p.RawData) == 0 {
return "", "", 0
}
// 获取第一个字节
firstByte := p.RawData[0]
// 转换为二进制字符串8位
binary = fmt.Sprintf("%08b", firstByte)
// 转换为十六进制字符串
hexVal = fmt.Sprintf("%02X", firstByte)
// 十进制值
decVal = firstByte
return binary, hexVal, decVal
}
// IDParts 存储ID的三个部分
type IDParts struct {
HSB struct {
Binary string
Hex string
Dec uint8
}
MSB struct {
Binary string
Hex string
Dec uint8
}
LSB struct {
Binary string
Hex string
Dec uint8
}
Complete struct {
Binary string
Hex string
Dec uint32
}
}
// GetCompleteID 获取完整的24-bit ID code
// HSB: bit 168-175 (索引21)
// MSB: bit 176-183 (索引22)
// LSB: bit 8-15 (索引1)
func (p *Protocol) GetCompleteID() (*IDParts, error) {
if len(p.RawData) < 23 { // 确保有足够的数据
return nil, fmt.Errorf("insufficient data length")
}
result := &IDParts{}
// 处理 HSB (bit 168-175, 索引21)
hsbByte := p.RawData[21]
result.HSB.Binary = fmt.Sprintf("%08b", hsbByte)
result.HSB.Hex = fmt.Sprintf("%02X", hsbByte)
result.HSB.Dec = hsbByte
// 处理 MSB (bit 176-183, 索引22)
msbByte := p.RawData[22]
result.MSB.Binary = fmt.Sprintf("%08b", msbByte)
result.MSB.Hex = fmt.Sprintf("%02X", msbByte)
result.MSB.Dec = msbByte
// 处理 LSB (bit 8-15, 索引1)
lsbByte := p.RawData[1]
result.LSB.Binary = fmt.Sprintf("%08b", lsbByte)
result.LSB.Hex = fmt.Sprintf("%02X", lsbByte)
result.LSB.Dec = lsbByte
// 组合完整的24位ID
completeID := uint32(hsbByte)<<16 | uint32(msbByte)<<8 | uint32(lsbByte)
result.Complete.Binary = fmt.Sprintf("%024b", completeID)
result.Complete.Hex = fmt.Sprintf("%06X", completeID)
result.Complete.Dec = completeID
return result, nil
}
// WindDirection 存储风向的三个部分
type WindDirection struct {
DirH struct {
Binary string // 4位二进制格式为"000X"其中X是bit24
Value uint8 // 实际值
}
DirM struct {
Binary string // bit 16-19
Value uint8
}
DirL struct {
Binary string // bit 20-23
Value uint8
}
Complete struct {
Binary string // 完整的12位二进制
Value uint16 // 完整值 (Range: 0°- 359°, Invalid: 0x1FF)
Degree float64 // 角度值
IsValid bool // 是否有效
}
}
// GetWindDirection 解析风向数据
// DIR_H: 4位 (000 + bit24)
// DIR_M: bit 16-19
// DIR_L: bit 20-23
// Value in hex (Range: 0°- 359°)
// If invalid fill with 0x1FF
func (p *Protocol) GetWindDirection() (*WindDirection, error) {
if len(p.RawData) < 4 { // 确保有足够的数据
return nil, fmt.Errorf("insufficient data length")
}
result := &WindDirection{}
// 获取包含bit24的字节索引3
byte3 := p.RawData[3]
// 获取bit24字节的最低位
bit24 := byte3 & 0x01
// 构造DIR_H: "000" + bit24
result.DirH.Binary = fmt.Sprintf("000%d", bit24)
result.DirH.Value = bit24
// 获取包含bit16-23的字节索引2
byte2 := p.RawData[2]
// 获取DIR_M (bit 16-19)
dirM := (byte2 >> 4) & 0x0F
result.DirM.Binary = fmt.Sprintf("%04b", dirM)
result.DirM.Value = dirM
// 获取DIR_L (bit 20-23)
dirL := byte2 & 0x0F
result.DirL.Binary = fmt.Sprintf("%04b", dirL)
result.DirL.Value = dirL
// 组合完整的风向值12位
completeDir := (uint16(bit24) << 8) | (uint16(dirM) << 4) | uint16(dirL)
result.Complete.Binary = fmt.Sprintf("%012b", completeDir)
result.Complete.Value = completeDir
// 检查值是否在有效范围内 (0-359)
if completeDir > 359 {
result.Complete.Value = 0x1FF
result.Complete.IsValid = false
result.Complete.Degree = 0
} else {
result.Complete.IsValid = true
result.Complete.Degree = float64(completeDir)
}
return result, nil
}
// WindSpeed 存储风速的各个部分
type WindSpeed struct {
WspFlag struct {
Binary string // bit 25
Value bool // true = 9bit模式, false = 10bit模式
}
Extend struct {
Binary string // 9bit模式: 000 + bit27
// 10bit模式: 00 + bit26 + bit27
Value uint8
}
WspH struct {
Binary string // bit 48-51
Value uint8
}
WspL struct {
Binary string // bit 52-55
Value uint8
}
Complete struct {
Binary string // 完整的9位或10位二进制
RawValue uint16 // 原始值
Value float64 // 实际风速值 (计算公式: RawValue/8*0.51)
}
}
// GetWindSpeed 解析风速数据
// WSP_FLAG: bit 25
// WIND_EXTEND:
// - 当WSP_FLAG=1时000 + bit279bit模式
// - 当WSP_FLAG=0时0 + bit136 + bit26 + bit2710bit模式
//
// WIND_H: bit 48-51
// WIND_L: bit 52-55
// 实际风速计算公式: value/8*0.51
func (p *Protocol) GetWindSpeed() (*WindSpeed, error) {
if len(p.RawData) < 18 { // 确保有足够的数据需要读取到bit136
return nil, fmt.Errorf("insufficient data length")
}
result := &WindSpeed{}
// 解析 WSP_FLAG (bit 25)
byte3 := p.RawData[3]
wspFlag := (byte3 >> 1) & 0x01 // bit 25
result.WspFlag.Binary = fmt.Sprintf("%d", wspFlag)
result.WspFlag.Value = wspFlag == 1
// 获取bit26和bit27
bit26 := (byte3 >> 2) & 0x01
bit27 := (byte3 >> 3) & 0x01
// 获取bit136在第17个字节的最高位
byte17 := p.RawData[17]
bit136 := (byte17 >> 7) & 0x01
// 解析 WIND_H 和 WIND_L (byte6)
byte6 := p.RawData[6]
windH := (byte6 >> 4) & 0x0F
windL := byte6 & 0x0F
result.WspH.Binary = fmt.Sprintf("%04b", windH)
result.WspH.Value = windH
result.WspL.Binary = fmt.Sprintf("%04b", windL)
result.WspL.Value = windL
// 组合完整的风速值
var rawValue uint16
if result.WspFlag.Value {
// 9bit模式000 + bit27 + WIND_H + WIND_L
rawValue = (uint16(bit27) << 8) | (uint16(windH) << 4) | uint16(windL)
result.Complete.Binary = fmt.Sprintf("%09b", rawValue)
} else {
// 10bit模式0 + bit136 + bit26 + bit27 + WIND_H + WIND_L
extendBits := (uint16(0) << 3) | (uint16(bit136) << 2) | (uint16(bit26) << 1) | uint16(bit27)
rawValue = (uint16(extendBits) << 8) | (uint16(windH) << 4) | uint16(windL)
result.Complete.Binary = fmt.Sprintf("%010b", rawValue)
}
result.Complete.RawValue = rawValue
// 计算实际风速值value/8*0.51
result.Complete.Value = float64(rawValue) / 8.0 * 0.51
return result, nil
}
// Temperature 存储温度的三个部分
type Temperature struct {
TmpH struct {
Binary string // 3位二进制格式为"0XXX"其中XXX是bit29-31
Value uint8
}
TmpM struct {
Binary string // bit 32-35
Value uint8
}
TmpL struct {
Binary string // bit 36-39
Value uint8
}
Complete struct {
Binary string // 完整的11位二进制
RawValue uint16 // 原始值包含400的偏移
Value float64 // 实际温度值 (Range: -40.0°C -> 60.0°C)
IsValid bool // 是否有效
}
}
// GetTemperature 解析温度数据
// TMP_H: 4位 (0 + bit29-31)
// TMP_M: bit 32-35
// TMP_L: bit 36-39
// 温度计算公式:(RawValue-400)/10
// 示例:
// 10.5°C = 0x1F9 (505-400)/10 = 10.5
// -10.5°C = 0x127 (295-400)/10 = -10.5
// 范围:-40.0°C -> 60.0°C
// 无效值0x7FF
func (p *Protocol) GetTemperature() (*Temperature, error) {
if len(p.RawData) < 5 { // 确保有足够的数据
return nil, fmt.Errorf("insufficient data length")
}
result := &Temperature{}
// 获取包含bit29-31的字节索引3
byte3 := p.RawData[3]
// 直接获取bit29-31 (010)
tmpHBits := byte3 & 0x07
// TMP_H 是 "0" + bit29-31
result.TmpH.Binary = fmt.Sprintf("0%03b", tmpHBits)
result.TmpH.Value = tmpHBits
// 获取包含bit32-39的字节索引4
byte4 := p.RawData[4]
// 获取TMP_M (bit 32-35)在byte4的高4位
tmpM := (byte4 >> 4) & 0x0F
result.TmpM.Binary = fmt.Sprintf("%04b", tmpM)
result.TmpM.Value = tmpM
// 获取TMP_L (bit 36-39)在byte4的低4位
tmpL := byte4 & 0x0F
result.TmpL.Binary = fmt.Sprintf("%04b", tmpL)
result.TmpL.Value = tmpL
// 组合完整的温度值
// 1. TMP_H (0 + bit29-31) 放在最高位
// 2. TMP_M (bit 32-35) 放在中间
// 3. TMP_L (bit 36-39) 放在最低位
completeTemp := uint16(0)
completeTemp |= uint16(tmpHBits) << 8 // TMP_H 移到高8位
completeTemp |= uint16(tmpM) << 4 // TMP_M 移到中间4位
completeTemp |= uint16(tmpL) // TMP_L 在最低4位
result.Complete.Binary = fmt.Sprintf("%012b", completeTemp)
result.Complete.RawValue = completeTemp
// 检查温度是否在有效范围内
// 有效范围计算:
// -40°C = (-40 * 10 + 400) = 0
// 60°C = (60 * 10 + 400) = 1000
if completeTemp > 1000 { // 超出范围
result.Complete.RawValue = 0x7FF // 无效值
result.Complete.Value = 0
result.Complete.IsValid = false
} else {
// 温度计算:(RawValue-400)/10
result.Complete.Value = (float64(completeTemp) - 400) / 10
result.Complete.IsValid = true
}
return result, nil
}
// Humidity 存储湿度的两个部分
type Humidity struct {
HmH struct {
Binary string // bit 40-43
Value uint8
}
HmL struct {
Binary string // bit 44-47
Value uint8
}
Complete struct {
Binary string // 完整的8位二进制
RawValue uint8 // 原始值(十六进制)
Value uint8 // 实际湿度值 (Range: 1% - 99%)
IsValid bool // 是否有效
}
}
// GetHumidity 解析湿度数据
// HM_H: bit 40-43
// HM_L: bit 44-47
// Range: 1% - 99%
// If invalid fill with 0xFF
// 示例0x37 = 55% (3*16 + 7 = 55)
func (p *Protocol) GetHumidity() (*Humidity, error) {
if len(p.RawData) < 6 { // 确保有足够的数据bit 47 在第6个字节内
return nil, fmt.Errorf("insufficient data length")
}
result := &Humidity{}
// 获取包含bit40-47的字节索引5
byte5 := p.RawData[5]
// 获取HM_H (bit 40-43)
hmH := (byte5 >> 4) & 0x0F
result.HmH.Binary = fmt.Sprintf("%04b", hmH)
result.HmH.Value = hmH
// 获取HM_L (bit 44-47)
hmL := byte5 & 0x0F
result.HmL.Binary = fmt.Sprintf("%04b", hmL)
result.HmL.Value = hmL
// 原始十六进制值
result.Complete.Binary = fmt.Sprintf("%08b", byte5)
result.Complete.RawValue = byte5
// 直接使用十六进制值转换为十进制作为湿度值
decimalValue := byte5
// 检查湿度是否在有效范围内 (1-99)
if decimalValue < 1 || decimalValue > 99 {
result.Complete.RawValue = 0xFF // 无效值
result.Complete.Value = 0
result.Complete.IsValid = false
} else {
result.Complete.Value = decimalValue
result.Complete.IsValid = true
}
return result, nil
}
// GustSpeed 存储阵风速度数据
type GustSpeed struct {
GustH struct {
Binary string // bit 56-59
Value uint8
}
GustL struct {
Binary string // bit 60-63
Value uint8
}
Complete struct {
Binary string // 完整的8位二进制
RawValue uint8 // 原始值
Value float64 // 实际阵风速度值 (计算公式: RawValue*0.51)
}
}
// GetGustSpeed 解析阵风速度数据
// GUST_H: bit 56-59
// GUST_L: bit 60-63
// 实际阵风速度计算公式: value*0.51
func (p *Protocol) GetGustSpeed() (*GustSpeed, error) {
if len(p.RawData) < 8 { // 确保有足够的数据bit 63 在第8个字节内
return nil, fmt.Errorf("insufficient data length")
}
result := &GustSpeed{}
// 解析 GUST_H (bit 56-59) 和 GUST_L (bit 60-63)
byte7 := p.RawData[7]
gustH := (byte7 >> 4) & 0x0F
gustL := byte7 & 0x0F
result.GustH.Binary = fmt.Sprintf("%04b", gustH)
result.GustH.Value = gustH
result.GustL.Binary = fmt.Sprintf("%04b", gustL)
result.GustL.Value = gustL
// 组合完整的阵风速度值
rawValue := byte7
result.Complete.Binary = fmt.Sprintf("%08b", rawValue)
result.Complete.RawValue = rawValue
// 计算实际阵风速度值value*0.51
result.Complete.Value = float64(rawValue) * 0.51
return result, nil
}
// Rainfall 存储降雨量数据
type Rainfall struct {
RainHH struct {
Binary string // bit 64-67
Value uint8
}
RainHL struct {
Binary string // bit 68-71
Value uint8
}
RainLH struct {
Binary string // bit 72-75
Value uint8
}
RainLL struct {
Binary string // bit 76-79
Value uint8
}
Complete struct {
Binary string // 完整的16位二进制
RawValue uint16 // 原始值
Value float64 // 实际降雨量值 (计算公式: RawValue*0.254)
}
}
// GetRainfall 解析降雨量数据
// RAIN_HH: bit 64-67
// RAIN_HL: bit 68-71
// RAIN_LH: bit 72-75
// RAIN_LL: bit 76-79
// 实际降雨量计算公式: value*0.254
func (p *Protocol) GetRainfall() (*Rainfall, error) {
if len(p.RawData) < 10 { // 确保有足够的数据bit 79 在第10个字节内
return nil, fmt.Errorf("insufficient data length")
}
result := &Rainfall{}
// 解析 RAIN_HH 和 RAIN_HL (byte8)
byte8 := p.RawData[8]
rainHH := (byte8 >> 4) & 0x0F
rainHL := byte8 & 0x0F
result.RainHH.Binary = fmt.Sprintf("%04b", rainHH)
result.RainHH.Value = rainHH
result.RainHL.Binary = fmt.Sprintf("%04b", rainHL)
result.RainHL.Value = rainHL
// 解析 RAIN_LH 和 RAIN_LL (byte9)
byte9 := p.RawData[9]
rainLH := (byte9 >> 4) & 0x0F
rainLL := byte9 & 0x0F
result.RainLH.Binary = fmt.Sprintf("%04b", rainLH)
result.RainLH.Value = rainLH
result.RainLL.Binary = fmt.Sprintf("%04b", rainLL)
result.RainLL.Value = rainLL
// 组合完整的降雨量值
rawValue := (uint16(rainHH) << 12) | (uint16(rainHL) << 8) | (uint16(rainLH) << 4) | uint16(rainLL)
result.Complete.Binary = fmt.Sprintf("%016b", rawValue)
result.Complete.RawValue = rawValue
// 计算实际降雨量值value*0.254
result.Complete.Value = float64(rawValue) * 0.254
return result, nil
}
// UVIndex 存储紫外线指数数据
type UVIndex struct {
UviHH struct {
Binary string // bit 80-83
Value uint8
}
UviHL struct {
Binary string // bit 84-87
Value uint8
}
UviLH struct {
Binary string // bit 88-91
Value uint8
}
UviLL struct {
Binary string // bit 92-95
Value uint8
}
Complete struct {
Binary string // 完整的16位二进制
RawValue uint16 // 原始值
Value float64 // 实际紫外线值 (单位: uW/c㎡)
IsValid bool // 是否有效
}
}
// GetUVIndex 解析紫外线指数数据
// UVI_HH: bit 80-83
// UVI_HL: bit 84-87
// UVI_LH: bit 88-91
// UVI_LL: bit 92-95
// Range: 0 uW/c㎡ to 20000 uW/c㎡
// If invalid fill with 0xFFFF
func (p *Protocol) GetUVIndex() (*UVIndex, error) {
if len(p.RawData) < 12 { // 确保有足够的数据bit 95 在第12个字节内
return nil, fmt.Errorf("insufficient data length")
}
result := &UVIndex{}
// 解析 UVI_HH 和 UVI_HL (byte10)
byte10 := p.RawData[10]
uviHH := (byte10 >> 4) & 0x0F
uviHL := byte10 & 0x0F
result.UviHH.Binary = fmt.Sprintf("%04b", uviHH)
result.UviHH.Value = uviHH
result.UviHL.Binary = fmt.Sprintf("%04b", uviHL)
result.UviHL.Value = uviHL
// 解析 UVI_LH 和 UVI_LL (byte11)
byte11 := p.RawData[11]
uviLH := (byte11 >> 4) & 0x0F
uviLL := byte11 & 0x0F
result.UviLH.Binary = fmt.Sprintf("%04b", uviLH)
result.UviLH.Value = uviLH
result.UviLL.Binary = fmt.Sprintf("%04b", uviLL)
result.UviLL.Value = uviLL
// 组合完整的紫外线值
rawValue := (uint16(uviHH) << 12) | (uint16(uviHL) << 8) | (uint16(uviLH) << 4) | uint16(uviLL)
result.Complete.Binary = fmt.Sprintf("%016b", rawValue)
result.Complete.RawValue = rawValue
// 检查是否在有效范围内 (0-20000)
if rawValue > 20000 {
result.Complete.RawValue = 0xFFFF
result.Complete.Value = 0
result.Complete.IsValid = false
} else {
result.Complete.Value = float64(rawValue)
result.Complete.IsValid = true
}
return result, nil
}
// Light 存储光照数据
type Light struct {
LightHH struct {
Binary string // bit 96-99
Value uint8
}
LightHL struct {
Binary string // bit 100-103
Value uint8
}
LightMH struct {
Binary string // bit 104-107
Value uint8
}
LightML struct {
Binary string // bit 108-111
Value uint8
}
LightLH struct {
Binary string // bit 112-115
Value uint8
}
LightLL struct {
Binary string // bit 116-119
Value uint8
}
Complete struct {
Binary string // 完整的24位二进制
RawValue uint32 // 原始值
Value float64 // 实际光照值 (计算公式: RawValue/10) (单位: lux)
IsValid bool // 是否有效
}
}
// GetLight 解析光照数据
// bit 96-119 (byte12-14: 00 04 9C)
// 实际光照计算公式: value/10
// Range: 0.0 lux -> 300,000.0 lux
// If invalid fill with 0xFFFFFF
func (p *Protocol) GetLight() (*Light, error) {
if len(p.RawData) < 15 { // 确保有足够的数据
return nil, fmt.Errorf("insufficient data length")
}
result := &Light{}
// 获取三个字节 (00 04 9C)
byte1 := p.RawData[12] // 00
byte2 := p.RawData[13] // 04
byte3 := p.RawData[14] // 9C
// 组合完整的光照值 (00 04 9C)
rawValue := (uint32(byte1) << 16) | (uint32(byte2) << 8) | uint32(byte3)
result.Complete.Binary = fmt.Sprintf("%024b", rawValue)
result.Complete.RawValue = rawValue
// 检查是否在有效范围内 (0-3000000, 因为实际值要除以10)
if rawValue > 3000000 {
result.Complete.RawValue = 0xFFFFFF
result.Complete.Value = 0
result.Complete.IsValid = false
} else {
result.Complete.Value = float64(rawValue) / 10.0
result.Complete.IsValid = true
}
return result, nil
}
// Pressure 存储大气压数据
type Pressure struct {
PressureH struct {
Binary string // bit 143-144 (补前导000)
Value uint8
}
PressureM struct {
Binary string // bit 145-151
Value uint8
}
PressureL struct {
Binary string // bit 152-159
Value uint8
}
Complete struct {
Binary string // 完整的17位二进制
RawValue uint32 // 原始值
Value float64 // 实际气压值 (计算公式: RawValue/100) (单位: hPa)
IsValid bool // 是否有效
}
}
// GetPressure 解析大气压数据
// 17位值组成000 + bit143 + bit144-159
// 实际气压计算公式: value/100
// Range: 300.00 hPa -> 1200.00 hPa
// If invalid fill with 0x1FFFF
// Example: 0x018A9E = 1010.22 hPa
func (p *Protocol) GetPressure() (*Pressure, error) {
if len(p.RawData) < 20 { // 确保有足够的数据
return nil, fmt.Errorf("insufficient data length")
}
result := &Pressure{}
// 获取三个字节 (01 88 F5)
byte1 := p.RawData[17] // 01
byte2 := p.RawData[18] // 88
byte3 := p.RawData[19] // F5
// 组合完整的气压值
rawValue := (uint32(byte1) << 16) | (uint32(byte2) << 8) | uint32(byte3)
result.Complete.Binary = fmt.Sprintf("%024b", rawValue)
result.Complete.RawValue = rawValue
// 检查是否在有效范围内 (30000-120000因为实际值要除以100)
if rawValue < 30000 || rawValue > 120000 {
result.Complete.RawValue = 0x1FFFF
result.Complete.Value = 0
result.Complete.IsValid = false
} else {
result.Complete.Value = float64(rawValue) / 100.0
result.Complete.IsValid = true
}
return result, nil
}
// RS485Protocol 定义RS485协议结构
type RS485Protocol struct {
RawData []byte
}
// NewRS485Protocol 创建新的RS485协议实例
func NewRS485Protocol(data []byte) *RS485Protocol {
return &RS485Protocol{
RawData: data,
}
}
// ValidateRS485Data 验证RS485数据是否有效
func ValidateRS485Data(data []byte) bool {
// 检查数据长度是否为25字节
if len(data) != 25 {
return false
}
// 检查起始字节是否为0x24
if data[0] != 0x24 {
return false
}
return true
}
// RS485WeatherData 存储RS485气象数据
type RS485WeatherData struct {
Temperature float64 // 温度
Humidity float64 // 湿度
WindSpeed float64 // 风速
WindDirection float64 // 风向
Rainfall float64 // 雨量
Light float64 // 光照
UV float64 // 紫外线
Pressure float64 // 气压
}
// ParseRS485Data 解析RS485数据
func (p *RS485Protocol) ParseRS485Data() (*RS485WeatherData, error) {
if !ValidateRS485Data(p.RawData) {
return nil, fmt.Errorf("无效的RS485数据格式")
}
data := &RS485WeatherData{}
// 解析温度 (索引5-6)
tempRaw := int16(p.RawData[5])<<8 | int16(p.RawData[6])
data.Temperature = float64(tempRaw) / 10.0
// 解析湿度 (索引7-8)
humRaw := int16(p.RawData[7])<<8 | int16(p.RawData[8])
data.Humidity = float64(humRaw) / 10.0
// 解析风速 (索引9-10)
windSpeedRaw := int16(p.RawData[9])<<8 | int16(p.RawData[10])
data.WindSpeed = float64(windSpeedRaw) / 10.0
// 解析风向 (索引11-12)
windDirRaw := int16(p.RawData[11])<<8 | int16(p.RawData[12])
data.WindDirection = float64(windDirRaw)
// 解析雨量 (索引13-14)
rainRaw := int16(p.RawData[13])<<8 | int16(p.RawData[14])
data.Rainfall = float64(rainRaw) / 10.0
// 解析光照 (索引15-16)
lightRaw := int16(p.RawData[15])<<8 | int16(p.RawData[16])
data.Light = float64(lightRaw)
// 解析紫外线 (索引17-18)
uvRaw := int16(p.RawData[17])<<8 | int16(p.RawData[18])
data.UV = float64(uvRaw) / 10.0
// 解析气压 (索引19-20)
pressureRaw := int16(p.RawData[19])<<8 | int16(p.RawData[20])
data.Pressure = float64(pressureRaw) / 10.0
return data, nil
}

View File

@ -1,688 +0,0 @@
package model
import (
"testing"
)
func TestIdentifyTxType(t *testing.T) {
// 测试数据24 36 F3 02 96 37 06 01 00 04 00 00 00 04 9C D3 9A 01 88 F5 7E 00 2A 9C F6
data := []byte{0x24, 0x36, 0xF3, 0x02, 0x96, 0x37, 0x06, 0x01, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x9C, 0xD3, 0x9A, 0x01, 0x88, 0xF5, 0x7E, 0x00, 0x2A, 0x9C, 0xF6}
protocol := NewProtocol(data)
binary, hex, dec := protocol.IdentifyTxType()
// 预期结果
expectedBinary := "00100100" // 24 的二进制表示
expectedHex := "24" // 第一个字节的十六进制表示
expectedDec := uint8(36) // 24 的十进制表示
// 验证二进制结果
if binary != expectedBinary {
t.Errorf("Binary representation incorrect. Got %s, want %s", binary, expectedBinary)
}
// 验证十六进制结果
if hex != expectedHex {
t.Errorf("Hex representation incorrect. Got %s, want %s", hex, expectedHex)
}
// 验证十进制结果
if dec != expectedDec {
t.Errorf("Decimal representation incorrect. Got %d, want %d", dec, expectedDec)
}
}
func TestGetCompleteID(t *testing.T) {
// 测试数据24 36 F3 02 96 37 06 01 00 04 00 00 00 04 9C D3 9A 01 88 F5 7E 00 2A 9C F6
data := []byte{0x24, 0x36, 0xF3, 0x02, 0x96, 0x37, 0x06, 0x01, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x9C, 0xD3, 0x9A, 0x01, 0x88, 0xF5, 0x7E, 0x00, 0x2A, 0x9C, 0xF6}
protocol := NewProtocol(data)
result, err := protocol.GetCompleteID()
if err != nil {
t.Fatalf("Unexpected error: %v", err)
}
// 测试 HSB (应该是 00)
expectedHSBBinary := "00000000" // 00 的二进制
expectedHSBHex := "00" // 00 的十六进制
expectedHSBDec := uint8(0) // 00 的十进制
if result.HSB.Binary != expectedHSBBinary {
t.Errorf("HSB Binary incorrect. Got %s, want %s", result.HSB.Binary, expectedHSBBinary)
}
if result.HSB.Hex != expectedHSBHex {
t.Errorf("HSB Hex incorrect. Got %s, want %s", result.HSB.Hex, expectedHSBHex)
}
if result.HSB.Dec != expectedHSBDec {
t.Errorf("HSB Dec incorrect. Got %d, want %d", result.HSB.Dec, expectedHSBDec)
}
// 测试 MSB (应该是 2A)
expectedMSBBinary := "00101010" // 2A 的二进制
expectedMSBHex := "2A" // 2A 的十六进制
expectedMSBDec := uint8(42) // 2A 的十进制
if result.MSB.Binary != expectedMSBBinary {
t.Errorf("MSB Binary incorrect. Got %s, want %s", result.MSB.Binary, expectedMSBBinary)
}
if result.MSB.Hex != expectedMSBHex {
t.Errorf("MSB Hex incorrect. Got %s, want %s", result.MSB.Hex, expectedMSBHex)
}
if result.MSB.Dec != expectedMSBDec {
t.Errorf("MSB Dec incorrect. Got %d, want %d", result.MSB.Dec, expectedMSBDec)
}
// 测试 LSB (应该是 36)
expectedLSBBinary := "00110110" // 36 的二进制
expectedLSBHex := "36" // 36 的十六进制
expectedLSBDec := uint8(54) // 36 的十进制
if result.LSB.Binary != expectedLSBBinary {
t.Errorf("LSB Binary incorrect. Got %s, want %s", result.LSB.Binary, expectedLSBBinary)
}
if result.LSB.Hex != expectedLSBHex {
t.Errorf("LSB Hex incorrect. Got %s, want %s", result.LSB.Hex, expectedLSBHex)
}
if result.LSB.Dec != expectedLSBDec {
t.Errorf("LSB Dec incorrect. Got %d, want %d", result.LSB.Dec, expectedLSBDec)
}
// 测试完整的24位ID (应该是 00 2A 36)
expectedCompleteBinary := "000000000010101000110110" // 完整24位二进制
expectedCompleteHex := "002A36" // 完整24位十六进制
expectedCompleteDec := uint32(0x002A36) // 完整24位十进制
if result.Complete.Binary != expectedCompleteBinary {
t.Errorf("Complete Binary incorrect. Got %s, want %s", result.Complete.Binary, expectedCompleteBinary)
}
if result.Complete.Hex != expectedCompleteHex {
t.Errorf("Complete Hex incorrect. Got %s, want %s", result.Complete.Hex, expectedCompleteHex)
}
if result.Complete.Dec != expectedCompleteDec {
t.Errorf("Complete Dec incorrect. Got %d, want %d", result.Complete.Dec, expectedCompleteDec)
}
}
func TestGetWindDirection(t *testing.T) {
tests := []struct {
name string
data []byte
expectedValue uint16
expectedValid bool
expectedDegree float64
}{
{
name: "Valid Direction",
data: []byte{0x24, 0x36, 0xF3, 0x02, 0x96}, // 原始数据方向值为243
expectedValue: 0xF3,
expectedValid: true,
expectedDegree: 243,
},
{
name: "Invalid Direction",
data: []byte{0x24, 0x36, 0xFF, 0x03, 0x96}, // 设置一个大于359的值
expectedValue: 0x1FF,
expectedValid: false,
expectedDegree: 0,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
protocol := NewProtocol(tt.data)
result, err := protocol.GetWindDirection()
if err != nil {
t.Fatalf("Unexpected error: %v", err)
}
if result.Complete.Value != tt.expectedValue {
t.Errorf("Value incorrect. Got %X, want %X", result.Complete.Value, tt.expectedValue)
}
if result.Complete.IsValid != tt.expectedValid {
t.Errorf("IsValid incorrect. Got %v, want %v", result.Complete.IsValid, tt.expectedValid)
}
if result.Complete.Degree != tt.expectedDegree {
t.Errorf("Degree incorrect. Got %v, want %v", result.Complete.Degree, tt.expectedDegree)
}
})
}
}
func TestGetTemperature(t *testing.T) {
tests := []struct {
name string
data []byte
expectedRaw uint16
expectedTemp float64
expectedValid bool
}{
{
name: "Temperature 10.5°C",
// 0x1F9 = 505 -> (505-400)/10 = 10.5
// TMP_H = 1 (001)
// TMP_M = F (1111)
// TMP_L = 9 (1001)
data: []byte{0x24, 0x36, 0xF3, 0x20, 0xF9}, // 设置byte3的bit29-31为001byte4为0xF9
expectedRaw: 0x1F9,
expectedTemp: 10.5,
expectedValid: true,
},
{
name: "Temperature -10.5°C",
// 0x127 = 295 -> (295-400)/10 = -10.5
// TMP_H = 1 (001)
// TMP_M = 2 (0010)
// TMP_L = 7 (0111)
data: []byte{0x24, 0x36, 0xF3, 0x20, 0x27}, // 设置byte3的bit29-31为001byte4为0x27
expectedRaw: 0x127,
expectedTemp: -10.5,
expectedValid: true,
},
{
name: "Invalid Temperature",
// 0x7FF = 2047 (超出范围)
// TMP_H = 7 (111)
// TMP_M = F (1111)
// TMP_L = F (1111)
data: []byte{0x24, 0x36, 0xF3, 0xE0, 0xFF}, // 设置byte3的bit29-31为111byte4为0xFF
expectedRaw: 0x7FF,
expectedTemp: 0,
expectedValid: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
protocol := NewProtocol(tt.data)
result, err := protocol.GetTemperature()
if err != nil {
t.Fatalf("Unexpected error: %v", err)
}
if result.Complete.RawValue != tt.expectedRaw {
t.Errorf("Raw value incorrect. Got %X, want %X", result.Complete.RawValue, tt.expectedRaw)
}
if result.Complete.Value != tt.expectedTemp {
t.Errorf("Temperature value incorrect. Got %.1f, want %.1f", result.Complete.Value, tt.expectedTemp)
}
if result.Complete.IsValid != tt.expectedValid {
t.Errorf("Validity incorrect. Got %v, want %v", result.Complete.IsValid, tt.expectedValid)
}
})
}
}
func TestGetHumidity(t *testing.T) {
tests := []struct {
name string
data []byte
expectedRaw uint8
expectedValue uint8
expectedValid bool
}{
{
name: "Valid Humidity 55%",
// 0x37 = 3*16 + 7 = 55%
data: []byte{0x24, 0x36, 0xF3, 0x02, 0x96, 0x37},
expectedRaw: 0x37,
expectedValue: 55,
expectedValid: true,
},
{
name: "Valid Humidity 1%",
// 0x01 = 0*16 + 1 = 1%
data: []byte{0x24, 0x36, 0xF3, 0x02, 0x96, 0x01},
expectedRaw: 0x01,
expectedValue: 1,
expectedValid: true,
},
{
name: "Valid Humidity 99%",
// 0x63 = 6*16 + 3 = 99%
data: []byte{0x24, 0x36, 0xF3, 0x02, 0x96, 0x63},
expectedRaw: 0x63,
expectedValue: 99,
expectedValid: true,
},
{
name: "Invalid Humidity (Too High)",
// 0x64 = 6*16 + 4 = 100% (无效)
data: []byte{0x24, 0x36, 0xF3, 0x02, 0x96, 0x64},
expectedRaw: 0xFF,
expectedValue: 0,
expectedValid: false,
},
{
name: "Invalid Humidity (Zero)",
// 0x00 = 0% (无效)
data: []byte{0x24, 0x36, 0xF3, 0x02, 0x96, 0x00},
expectedRaw: 0xFF,
expectedValue: 0,
expectedValid: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
protocol := NewProtocol(tt.data)
result, err := protocol.GetHumidity()
if err != nil {
t.Fatalf("Unexpected error: %v", err)
}
if result.Complete.RawValue != tt.expectedRaw {
t.Errorf("Raw value incorrect. Got %X, want %X", result.Complete.RawValue, tt.expectedRaw)
}
if result.Complete.Value != tt.expectedValue {
t.Errorf("Humidity value incorrect. Got %d%%, want %d%%", result.Complete.Value, tt.expectedValue)
}
if result.Complete.IsValid != tt.expectedValid {
t.Errorf("Validity incorrect. Got %v, want %v", result.Complete.IsValid, tt.expectedValid)
}
})
}
}
func TestGetWindSpeed(t *testing.T) {
// 测试数据24 36 F3 02 96 37 06 01 00 04 00 00 00 04 9C D3 9A 01 88 F5 7E 00 2A 9C F6
data := []byte{0x24, 0x36, 0xF3, 0x02, 0x96, 0x37, 0x06, 0x01, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x9C, 0xD3, 0x9A, 0x01, 0x88, 0xF5, 0x7E, 0x00, 0x2A, 0x9C, 0xF6}
protocol := NewProtocol(data)
result, err := protocol.GetWindSpeed()
if err != nil {
t.Fatalf("Unexpected error: %v", err)
}
// 验证 WSP_FLAG (bit 25)
if !result.WspFlag.Value {
t.Error("WSP_FLAG should be 1")
}
// 验证 WIND_H 和 WIND_L
if result.WspH.Value != 0x0 {
t.Errorf("WIND_H incorrect. Got %X, want 0", result.WspH.Value)
}
if result.WspL.Value != 0x6 {
t.Errorf("WIND_L incorrect. Got %X, want 6", result.WspL.Value)
}
// 验证完整值9bit模式000 + bit27 + WIND_H + WIND_L
expectedRaw := uint16(0x006)
if result.Complete.RawValue != expectedRaw {
t.Errorf("Raw value incorrect. Got %X, want %X", result.Complete.RawValue, expectedRaw)
}
// 验证实际风速值6/8*0.51 = 0.38250 m/s
expectedValue := float64(0x006) / 8.0 * 0.51
if result.Complete.Value != expectedValue {
t.Errorf("Wind speed value incorrect. Got %.5f m/s, want %.5f m/s",
result.Complete.Value, expectedValue)
}
}
func TestGetGustSpeed(t *testing.T) {
// 测试数据24 36 F3 02 96 37 06 01 00 04 00 00 00 04 9C D3 9A 01 88 F5 7E 00 2A 9C F6
data := []byte{0x24, 0x36, 0xF3, 0x02, 0x96, 0x37, 0x06, 0x01, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x9C, 0xD3, 0x9A, 0x01, 0x88, 0xF5, 0x7E, 0x00, 0x2A, 0x9C, 0xF6}
protocol := NewProtocol(data)
result, err := protocol.GetGustSpeed()
if err != nil {
t.Fatalf("Unexpected error: %v", err)
}
// 验证 GUST_H (0x0)
expectedGustHBinary := "0000"
if result.GustH.Binary != expectedGustHBinary {
t.Errorf("GUST_H Binary incorrect. Got %s, want %s", result.GustH.Binary, expectedGustHBinary)
}
if result.GustH.Value != 0x0 {
t.Errorf("GUST_H Value incorrect. Got %X, want 0", result.GustH.Value)
}
// 验证 GUST_L (0x1)
expectedGustLBinary := "0001"
if result.GustL.Binary != expectedGustLBinary {
t.Errorf("GUST_L Binary incorrect. Got %s, want %s", result.GustL.Binary, expectedGustLBinary)
}
if result.GustL.Value != 0x1 {
t.Errorf("GUST_L Value incorrect. Got %X, want 1", result.GustL.Value)
}
// 验证完整值
expectedBinary := "00000001" // 0x01
if result.Complete.Binary != expectedBinary {
t.Errorf("Complete Binary incorrect. Got %s, want %s", result.Complete.Binary, expectedBinary)
}
if result.Complete.RawValue != 0x01 {
t.Errorf("Raw value incorrect. Got %X, want 01", result.Complete.RawValue)
}
// 验证实际阵风速度值0x01 = 1, 1*0.51 = 0.51 m/s
expectedValue := float64(0x01) * 0.51
if result.Complete.Value != expectedValue {
t.Errorf("Gust speed value incorrect. Got %.5f m/s, want %.5f m/s", result.Complete.Value, expectedValue)
}
}
func TestGetRainfall(t *testing.T) {
// 测试数据24 36 F3 02 96 37 06 01 00 04 00 00 00 04 9C D3 9A 01 88 F5 7E 00 2A 9C F6
data := []byte{0x24, 0x36, 0xF3, 0x02, 0x96, 0x37, 0x06, 0x01, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x9C, 0xD3, 0x9A, 0x01, 0x88, 0xF5, 0x7E, 0x00, 0x2A, 0x9C, 0xF6}
protocol := NewProtocol(data)
result, err := protocol.GetRainfall()
if err != nil {
t.Fatalf("Unexpected error: %v", err)
}
// 验证 RAIN_HH (0x0)
expectedRainHHBinary := "0000"
if result.RainHH.Binary != expectedRainHHBinary {
t.Errorf("RAIN_HH Binary incorrect. Got %s, want %s", result.RainHH.Binary, expectedRainHHBinary)
}
if result.RainHH.Value != 0x0 {
t.Errorf("RAIN_HH Value incorrect. Got %X, want 0", result.RainHH.Value)
}
// 验证 RAIN_HL (0x0)
expectedRainHLBinary := "0000"
if result.RainHL.Binary != expectedRainHLBinary {
t.Errorf("RAIN_HL Binary incorrect. Got %s, want %s", result.RainHL.Binary, expectedRainHLBinary)
}
if result.RainHL.Value != 0x0 {
t.Errorf("RAIN_HL Value incorrect. Got %X, want 0", result.RainHL.Value)
}
// 验证 RAIN_LH (0x0)
expectedRainLHBinary := "0000"
if result.RainLH.Binary != expectedRainLHBinary {
t.Errorf("RAIN_LH Binary incorrect. Got %s, want %s", result.RainLH.Binary, expectedRainLHBinary)
}
if result.RainLH.Value != 0x0 {
t.Errorf("RAIN_LH Value incorrect. Got %X, want 0", result.RainLH.Value)
}
// 验证 RAIN_LL (0x4)
expectedRainLLBinary := "0100"
if result.RainLL.Binary != expectedRainLLBinary {
t.Errorf("RAIN_LL Binary incorrect. Got %s, want %s", result.RainLL.Binary, expectedRainLLBinary)
}
if result.RainLL.Value != 0x4 {
t.Errorf("RAIN_LL Value incorrect. Got %X, want 4", result.RainLL.Value)
}
// 验证完整值
expectedBinary := "0000000000000100" // 0x0004
if result.Complete.Binary != expectedBinary {
t.Errorf("Complete Binary incorrect. Got %s, want %s", result.Complete.Binary, expectedBinary)
}
if result.Complete.RawValue != 0x0004 {
t.Errorf("Raw value incorrect. Got %X, want 0004", result.Complete.RawValue)
}
// 验证实际降雨量值0x0004 = 4, 4*0.254 = 1.016 mm
expectedValue := float64(0x0004) * 0.254
if result.Complete.Value != expectedValue {
t.Errorf("Rainfall value incorrect. Got %.3f mm, want %.3f mm", result.Complete.Value, expectedValue)
}
}
func TestGetUVIndex(t *testing.T) {
tests := []struct {
name string
data []byte
expectedRaw uint16
expectedValue float64
expectedValid bool
}{
{
name: "Valid UV Index",
// 测试数据24 36 F3 02 96 37 06 01 00 04 00 00 00 04 9C D3 9A 01 88 F5 7E 00 2A 9C F6
data: []byte{0x24, 0x36, 0xF3, 0x02, 0x96, 0x37, 0x06, 0x01, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x9C, 0xD3, 0x9A, 0x01, 0x88, 0xF5, 0x7E, 0x00, 0x2A, 0x9C, 0xF6},
expectedRaw: 0x0000, // byte10=0x00, byte11=0x00
expectedValue: 0, // 0 uW/c㎡
expectedValid: true,
},
{
name: "Invalid UV Index (Too High)",
data: []byte{0x24, 0x36, 0xF3, 0x02, 0x96, 0x37, 0x06, 0x01, 0x00, 0x04, 0xFF, 0xFF}, // 设置一个超出范围的值
expectedRaw: 0xFFFF, // 无效值
expectedValue: 0, // 无效时返回0
expectedValid: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
protocol := NewProtocol(tt.data)
result, err := protocol.GetUVIndex()
if err != nil {
t.Fatalf("Unexpected error: %v", err)
}
if result.Complete.RawValue != tt.expectedRaw {
t.Errorf("Raw value incorrect. Got %X, want %X", result.Complete.RawValue, tt.expectedRaw)
}
if result.Complete.Value != tt.expectedValue {
t.Errorf("UV Index value incorrect. Got %.1f uW/c㎡, want %.1f uW/c㎡",
result.Complete.Value, tt.expectedValue)
}
if result.Complete.IsValid != tt.expectedValid {
t.Errorf("Validity incorrect. Got %v, want %v", result.Complete.IsValid, tt.expectedValid)
}
})
}
}
func TestGetLight(t *testing.T) {
// 测试数据24 36 F3 02 96 37 06 01 00 04 00 00 00 04 9C D3 9A 01 88 F5 7E 00 2A 9C F6
data := []byte{0x24, 0x36, 0xF3, 0x02, 0x96, 0x37, 0x06, 0x01, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x9C, 0xD3, 0x9A, 0x01, 0x88, 0xF5, 0x7E, 0x00, 0x2A, 0x9C, 0xF6}
protocol := NewProtocol(data)
result, err := protocol.GetLight()
if err != nil {
t.Fatalf("Unexpected error: %v", err)
}
// 验证原始值 (byte13-15: 00 04 9C)
expectedRaw := uint32(0x00049C)
if result.Complete.RawValue != expectedRaw {
t.Errorf("Raw value incorrect. Got %X, want %X", result.Complete.RawValue, expectedRaw)
}
// 验证实际光照值0x00049C = 1180, 1180/10 = 118.0 lux
expectedValue := float64(0x00049C) / 10.0
if result.Complete.Value != expectedValue {
t.Errorf("Light value incorrect. Got %.1f lux, want %.1f lux",
result.Complete.Value, expectedValue)
}
if !result.Complete.IsValid {
t.Error("Light value should be valid")
}
}
func TestGetPressure(t *testing.T) {
// 测试数据24 36 F3 02 96 37 06 01 00 04 00 00 00 04 9C D3 9A 01 88 F5 7E 00 2A 9C F6
data := []byte{0x24, 0x36, 0xF3, 0x02, 0x96, 0x37, 0x06, 0x01, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x9C, 0xD3, 0x9A, 0x01, 0x88, 0xF5, 0x7E, 0x00, 0x2A, 0x9C, 0xF6}
protocol := NewProtocol(data)
result, err := protocol.GetPressure()
if err != nil {
t.Fatalf("Unexpected error: %v", err)
}
// 验证原始值 (01 88 F5)
expectedRaw := uint32(0x0188F5)
if result.Complete.RawValue != expectedRaw {
t.Errorf("Raw value incorrect. Got %X, want %X", result.Complete.RawValue, expectedRaw)
}
// 验证实际气压值0x0188F5 = 100597, 100597/100 = 1005.97 hPa
expectedValue := float64(0x0188F5) / 100.0
if result.Complete.Value != expectedValue {
t.Errorf("Pressure value incorrect. Got %.2f hPa, want %.2f hPa",
result.Complete.Value, expectedValue)
}
if !result.Complete.IsValid {
t.Error("Pressure value should be valid")
}
}
func TestParseNewData(t *testing.T) {
// 新的测试数据24 F2 30 02 AF 51 03 01 00 08 00 00 00 00 00 6E C2 01 82 D8 5B 00 29 87 EA
data := []byte{0x24, 0xF2, 0x30, 0x02, 0xAF, 0x51, 0x03, 0x01, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x6E, 0xC2, 0x01, 0x82, 0xD8, 0x5B, 0x00, 0x29, 0x87, 0xEA}
protocol := NewProtocol(data)
// 1. 解析风速
windSpeed, err := protocol.GetWindSpeed()
if err != nil {
t.Fatalf("Failed to parse wind speed: %v", err)
}
t.Logf("Wind Speed: %.5f m/s (raw: 0x%X)", windSpeed.Complete.Value, windSpeed.Complete.RawValue)
// 2. 解析阵风速度
gustSpeed, err := protocol.GetGustSpeed()
if err != nil {
t.Fatalf("Failed to parse gust speed: %v", err)
}
t.Logf("Gust Speed: %.5f m/s (raw: 0x%X)", gustSpeed.Complete.Value, gustSpeed.Complete.RawValue)
// 3. 解析温度
temp, err := protocol.GetTemperature()
if err != nil {
t.Fatalf("Failed to parse temperature: %v", err)
}
t.Logf("Temperature: %.2f °C (raw: 0x%X)", temp.Complete.Value, temp.Complete.RawValue)
// 4. 解析湿度
humidity, err := protocol.GetHumidity()
if err != nil {
t.Fatalf("Failed to parse humidity: %v", err)
}
t.Logf("Humidity: %d%% (raw: 0x%X)", humidity.Complete.Value, humidity.Complete.RawValue)
// 5. 解析光照
light, err := protocol.GetLight()
if err != nil {
t.Fatalf("Failed to parse light: %v", err)
}
t.Logf("Light: %.1f lux (raw: 0x%X)", light.Complete.Value, light.Complete.RawValue)
// 6. 解析大气压
pressure, err := protocol.GetPressure()
if err != nil {
t.Fatalf("Failed to parse pressure: %v", err)
}
t.Logf("Pressure: %.2f hPa (raw: 0x%X)", pressure.Complete.Value, pressure.Complete.RawValue)
// 7. 解析UV指数
uv, err := protocol.GetUVIndex()
if err != nil {
t.Fatalf("Failed to parse UV index: %v", err)
}
t.Logf("UV Index: %.1f uW/c㎡ (raw: 0x%X)", uv.Complete.Value, uv.Complete.RawValue)
// 8. 解析降雨量
rainfall, err := protocol.GetRainfall()
if err != nil {
t.Fatalf("Failed to parse rainfall: %v", err)
}
t.Logf("Rainfall: %.3f mm (raw: 0x%X)", rainfall.Complete.Value, rainfall.Complete.RawValue)
}
func TestParseNewDataWithDetails(t *testing.T) {
// 新的测试数据24 F2 09 02 BA 4F 13 03 00 6A 02 33 04 13 5C AC FE 01 83 93 17 00 29 35 88
data := []byte{0x24, 0xF2, 0x09, 0x02, 0xBA, 0x4F, 0x13, 0x03, 0x00, 0x6A, 0x02, 0x33, 0x04, 0x13, 0x5C, 0xAC, 0xFE, 0x01, 0x83, 0x93, 0x17, 0x00, 0x29, 0x35, 0x88}
protocol := NewProtocol(data)
// 1. 风速解析
t.Log("\n=== 风速解析 ===")
windSpeed, _ := protocol.GetWindSpeed()
t.Logf("风速: %.5f m/s (raw: 0x%X)", windSpeed.Complete.Value, windSpeed.Complete.RawValue)
t.Logf("WSP_H: %s (0x%X), WSP_L: %s (0x%X)",
windSpeed.WspH.Binary, windSpeed.WspH.Value,
windSpeed.WspL.Binary, windSpeed.WspL.Value)
if windSpeed.Extend.Value != 0 {
t.Logf("WIND_Extend: %s (0x%X)", windSpeed.Extend.Binary, windSpeed.Extend.Value)
}
// 2. 温度解析
t.Log("\n=== 温度解析 ===")
temp, _ := protocol.GetTemperature()
t.Logf("温度: %.2f °C (raw: 0x%X)", temp.Complete.Value, temp.Complete.RawValue)
t.Logf("TMP_H: %s (0x%X), TMP_M: %s (0x%X), TMP_L: %s (0x%X)",
temp.TmpH.Binary, temp.TmpH.Value,
temp.TmpM.Binary, temp.TmpM.Value,
temp.TmpL.Binary, temp.TmpL.Value)
// 3. 湿度解析
t.Log("\n=== 湿度解析 ===")
humidity, _ := protocol.GetHumidity()
t.Logf("湿度: %d%% (raw: 0x%X)", humidity.Complete.Value, humidity.Complete.RawValue)
t.Logf("HM_H: %s (0x%X), HM_L: %s (0x%X)",
humidity.HmH.Binary, humidity.HmH.Value,
humidity.HmL.Binary, humidity.HmL.Value)
// 4. 光照解析
t.Log("\n=== 光照解析 ===")
light, _ := protocol.GetLight()
t.Logf("光照: %.1f lux (raw: 0x%X)", light.Complete.Value, light.Complete.RawValue)
t.Logf("原始字节: %02X %02X %02X", data[12], data[13], data[14])
// 5. 大气压解析
t.Log("\n=== 大气压解析 ===")
pressure, _ := protocol.GetPressure()
t.Logf("大气压: %.2f hPa (raw: 0x%X)", pressure.Complete.Value, pressure.Complete.RawValue)
t.Logf("原始字节: %02X %02X %02X", data[17], data[18], data[19])
// 6. UV指数解析
t.Log("\n=== UV指数解析 ===")
uv, _ := protocol.GetUVIndex()
t.Logf("UV指数: %.1f uW/c㎡ (raw: 0x%X)", uv.Complete.Value, uv.Complete.RawValue)
t.Logf("原始字节: %02X %02X", data[10], data[11])
// 7. 降雨量解析
t.Log("\n=== 降雨量解析 ===")
rainfall, _ := protocol.GetRainfall()
t.Logf("降雨量: %.3f mm (raw: 0x%X)", rainfall.Complete.Value, rainfall.Complete.RawValue)
t.Logf("原始字节: %02X %02X", data[8], data[9])
// 8. 阵风速度解析
t.Log("\n=== 阵风速度解析 ===")
gust, _ := protocol.GetGustSpeed()
t.Logf("阵风速度: %.2f m/s (raw: 0x%X)", gust.Complete.Value, gust.Complete.RawValue)
t.Logf("原始字节: %02X", data[7])
// 9. 风向解析
t.Log("\n=== 风向解析 ===")
windDir, _ := protocol.GetWindDirection()
t.Logf("风向: %.1f° (raw: 0x%X)", windDir.Complete.Degree, windDir.Complete.Value)
t.Logf("原始字节: %02X %02X", data[2], data[3])
// 10. 设备ID解析
t.Log("\n=== 设备ID解析 ===")
id, _ := protocol.GetCompleteID()
t.Logf("设备ID: %02X %02X %02X", id.HSB.Dec, id.MSB.Dec, id.LSB.Dec)
t.Logf("原始字节: HSB=%02X, MSB=%02X, LSB=%02X", data[21], data[22], data[1])
}

View File

@ -5,19 +5,9 @@ import (
"net/url"
"regexp"
"strconv"
"time"
)
// DeviceType 定义设备类型
type DeviceType int
const (
DeviceTypeWIFI DeviceType = iota
DeviceTypeRS485
)
type WeatherData struct {
DeviceType DeviceType
StationID string
Password string
TempF float64
@ -49,37 +39,24 @@ type WeatherData struct {
var urlRegex = regexp.MustCompile(`/weatherstation/updateweatherstation\.php\?([^&\s]+(&[^&\s]+)*)`)
// ParseData 根据数据类型解析气象数据
func ParseData(data []byte) (*WeatherData, error) {
// 检查是否为RS485数据
if len(data) == 25 && data[0] == 0x24 {
return ParseRS485WeatherData(data)
}
// 尝试解析为WIFI数据
return ParseWIFIWeatherData(string(data))
}
// ParseWIFIWeatherData 解析WIFI设备数据
func ParseWIFIWeatherData(data string) (*WeatherData, error) {
func ParseWeatherData(data string) (*WeatherData, error) {
matches := urlRegex.FindStringSubmatch(data)
if len(matches) < 2 {
return nil, fmt.Errorf("无法找到有效的气象站数据URL")
}
queryString := matches[1]
values, err := url.ParseQuery(queryString)
if err != nil {
return nil, fmt.Errorf("解析查询参数失败: %v", err)
}
wd := &WeatherData{
DeviceType: DeviceTypeWIFI,
DateUTC: time.Now().UTC().Format("2006-01-02 15:04:05"),
}
wd := &WeatherData{}
wd.StationID = values.Get("ID")
wd.Password = values.Get("PASSWORD")
wd.DateUTC = values.Get("dateutc")
wd.SoftwareType = values.Get("softwaretype")
wd.Action = values.Get("action")
@ -174,48 +151,6 @@ func ParseWIFIWeatherData(data string) (*WeatherData, error) {
return wd, nil
}
// ParseRS485WeatherData 解析RS485设备数据
func ParseRS485WeatherData(data []byte) (*WeatherData, error) {
protocol := NewRS485Protocol(data)
rs485Data, err := protocol.ParseRS485Data()
if err != nil {
return nil, err
}
wd := &WeatherData{
DeviceType: DeviceTypeRS485,
DateUTC: time.Now().UTC().Format("2006-01-02 15:04:05"),
StationID: fmt.Sprintf("RS485-%02X%02X", data[1], data[2]), // 使用前两个字节作为设备ID
}
// 转换温度(摄氏度到华氏度)
wd.TempF = rs485Data.Temperature*9/5 + 32
// 转换湿度(直接使用)
wd.Humidity = int(rs485Data.Humidity)
// 转换风向(直接使用)
wd.WindDir = int(rs485Data.WindDirection)
// 转换风速m/s到mph
wd.WindSpeedMph = rs485Data.WindSpeed * 2.23694
// 转换降雨量mm到inch
wd.RainIn = rs485Data.Rainfall / 25.4
// 转换光照(直接使用)
wd.SolarRadiation = rs485Data.Light
// 转换UV直接使用
wd.UV = int(rs485Data.UV)
// 转换气压hPa到inHg
wd.BarometerIn = rs485Data.Pressure / 33.8639
wd.AbsBarometerIn = wd.BarometerIn
return wd, nil
}
func (w *WeatherData) String() string {
return fmt.Sprintf(`
站点ID: %s